H=240-16t^2

Simple and best practice solution for H=240-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=240-16t^2 equation:



=240-16H^2
We move all terms to the left:
-(240-16H^2)=0
We get rid of parentheses
16H^2-240=0
a = 16; b = 0; c = -240;
Δ = b2-4ac
Δ = 02-4·16·(-240)
Δ = 15360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15360}=\sqrt{1024*15}=\sqrt{1024}*\sqrt{15}=32\sqrt{15}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{15}}{2*16}=\frac{0-32\sqrt{15}}{32} =-\frac{32\sqrt{15}}{32} =-\sqrt{15} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{15}}{2*16}=\frac{0+32\sqrt{15}}{32} =\frac{32\sqrt{15}}{32} =\sqrt{15} $

See similar equations:

| 9x-12=2x-5 | | 2/3j=1/4+2/3-j/3 | | 16.2=5.36+4x | | 5x-1=4-6x | | 85=2x-17 | | 85=2x-7 | | 2x=5x-(x+10) | | 3^(2x+2)+27^(x+1)=3 | | -(m-4)=m+10 | | n​/5+0.6=2 | | 7g-25=4g+52 | | 5x+9=21-2x | | Z=6x(5-2)+6 | | 18x2-39x+20=0 | | 25-5m=2m | | 8p=3p=25 | | 7x+4-2x=4 | | −6x−90=9x | | -7x+11=-12 | | 4-7=m(1-5) | | 6q-48=54 | | 2e+10=20 | | 3+3(2x+1)+x=11x+3 | | 8(4w+7)/5=2 | | -4(2t+10)=-16 | | 8-3x-1=3(2x+3)-8x | | 3x~2-11x-7=0 | | 3+3{2x+1+x=11x+3 | | 3+3{2x+1}+x=11x+3 | | 6(4w+5)/4=1 | | -14t+-49=-91 | | 5x-1-3(x-1)-2=3x |

Equations solver categories